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In RCTs...

INTERVENTION

Population is splitinto 2
groups by random lot

CONTROL

Outcomes for both
groups are measured

' = looking for work

' = found work
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CIED - PHYSIOLOGICAL PACING

Conduction System Pacing vs m
Biventricular Pacing in Heart Failure © iy
and Wide QRS Patients
LEVEL-AT Trial

Margarida Pujol-Lopez, MD,*" Rafael Jiménez-Arjona, MD,* Paz Garre, BEnG,” Eduard Guasch, MD, PuD,*>¢

Roger Borras, MSc,*™ Adelina Doltra, MD, PuD,*" Elisenda Ferré, MEnc,“’ Cora Garcia-Ribas, MD, PuD,"

Mireia Niebla, RN,? Esther Carro, RN, Jose L. Puente, MD," Sara Vazquez-Calvo, MD,” Eric Invers-Rubio, BEnG,"
Ivo Roca-Luque, MD, PuD,*"“ M. Angeles Castel, MD, PuD,*" Elena Arbelo, MD, PuD,*"™ Marta Sitges, MD, PuD,*"¢
Josep Brugada, MD, PuD,*>¢ José M. Tolosana, MD, PuD,*P%* Lluis Mont, MD, PuD>™%*
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FIGURE 1 Flow Diagram

Assessed for
eligibility
(n=80)

Excluded (n=10)
|3 | - Not meeting inclusion criteria(n=8)
f

- Declined to participate (n=2)

70 patients with inclusion criteria and
no exclusion criteria

h

1 11

(n=70)

Allocation h 4

Biventricular pacing (BiVP)
(n=35)

Conduction system pacing (CSP)

(n=35)

8 crossovers:

- n=7 crossed over to BiV pacing
- n=1 crossed over to BiV pacing but n=2 crossed over to CSP
failed ta receive BiV pacing Follow-up 45 days

ECG imaging not performed (n=2): ECG imaging not performed (n=2):
- lymphoma

- Death
- Residence transfer at 45 days - Technical issue retrieving data
|
33 included in the primary
analysis analysis
(LVAT with ECG imaging) (LVAT with ECG imaging)

33 included in the primary

Follow-up 6 months

A

35 included in the secondary 35 included in the secondary

analysis

ELENTET

The LEVEL-AT (Left Ventricular Activation Time Shortening with Conduction System Pacing vs Biventricular Resynchronization Therapy) trial flowchart from enrollment
to follow-up. BiVP = biventricular pacing; CSP = conduction system pacing; ECG = electrocardiogram; LVAT = left ventricular activation time.
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CENTRAL ILLUSTRATION CSP and BiVP Obtained Similar Degree of Cardiac Resynchronization

A B
Conduction System Pacing

Noninferiority of CSP compared
Baseline to BiVP:

1. Decrease of LVAT
P<0.001

H

150 4
LVAT 98 ms LVAT 65 ms

9 120 4

ALVAT -33 ms E

[
Biventricular Pacing < 904

Baseline o
60 -

Baseline Final Baseline Final

2. Left ventricular reverse remodeling

3. Hospitalization due to heart failure or mortality fiilrg?v"_ﬂ';
LVAT 108 ms LVAT 75 ms 4. NYHA functional class improvement
ALVAT -33 ms 5. QRS interval shortening

Pujol-Lopez M, et al. J Am Coll Cardiol EP. 2022;8(11):1431-1445.

TABLE 2 Endpoints for Intention to Treat

Mean Difference P Value for P Value for
csp BivP (95% C1) Noninferiority Superiority
Primary
n 3 33
Delta LVAT, ms 28 = 26 21 + 20 6.8 (-18.3 10 4.6) 0.001 0.24
Secondary
n 35 35
Final QRS duration, ms 125 £18 129 £13 47(-122102.9) 0.001 023
Delta QRS, ms 5320 48 £ 20 44 (-139105.0) 0.001 0.35
Correction of SF, mm 1918 2017 01(-081w009) 0.5 0.89
Delta LVEF at & mo, %
6 mo - baseline 122+9 1B1+9 09( 53t03.6) 0.07 069
Delta LVESV at 6 mo, mL
6 mo - baseline 37 £59 30 =4 8(-33t017) 0.04 0.55
Delta NYHA functional class at 6 mo 08 =08 04+:08 03(-0.71t0 0.0) 0.001 0.08
Heart failure hospitalization or mortality at 6 mo 29 1.4 (4) 9% (-21% to 4%) 0.002 0.16
Heart failure hospitalization 290 8.6(3)
Mortality 0(0) 5.7 (2%

Values are n, mean + SO, or n (%), unless otherwise indicated. *1 hospitalized patient later died.

LVESV - left ventricular end systolic volume; SF

septal flash; other abbreviations as in Table 1.

(A) Example of left ventricular (LV) activation time (LVAT) shortening with conduction system pacing (CSP) (top) and with biventricular pacing (BiVP) (bottom). Both
cases show long LVAT baseline with delayed activation of the left ventricle (blue). Both CSP and BiVP showed a similar decrease in LVAT measured with electrocar-
diographic imaging and faster activation of the left ventricle (green and red). (B) Both CSP and BiVP resulted in similar (noninferior) decrease of LVAT, LV reverse
remodeling, heart failure or mortality, impr 1t in New York Heart Assodation (NYHA) functional class at 6 months, and QRS shortening.
ALVAT = (final LVAT — baseline LVAT).
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Bone Marrow Transplantation (2020) 55:4-8
https://doi.org/10,1038/541409-018-0424-x
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Causal inference in randomized clinical trials
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Introduction to computational causal inference using
reproducible Stata, R, and Python code: A tutorial

Matthew J. Smith' | Mohammad A. Mansournia® | Camille Maringe'® |
Paul N. Zivich**© | Stephen R. Cole* | Clémence Leyrat' | Aurélien Belot! |
Bernard Rachet' | Miguel A. Luque-Fernandez'4%

*Inequalities in Cancer Outcomes
Network, Department of Abstract
Non-communicable Disease The main purpose of many medical studies is to estimate the effects of a
Epidemiology, London School of Hyglene
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Blostatistics, Tehran University of Medical tional study designs may be used. There are major challenges with observational
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Definition 1: Individual treatment
effect

The individual treatment effect, §;,
equals Y1 — Y?

!

Definition 3: Switching equation

An individual's observed health
outcomes, Y/, is determined by
treatment assignment, D;, and
corresponding potential outcomes:

Y: = DiY:E (1= D)

= e
v, _ Y’.O!fD,—l
Y ifDi=0

Definition 2: Average treatment effect

(ATE)

The average treatment effect is the
population average of all / individual
treatment effects

El5] = E[VI-YQ
= E[V}] - E[Y]]

Definition 4: Fundamental problem of
causal inference

It is impossible to observe both Yi1
and Yi0 for the same individual and so
individual causal effects, §;, are
unknowable.
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Mediation Analysis

A mediation model seeks to identify and explain
the mechanism or process that underlies an
observed relationship between an independent
variable and a dependent variable via the
inclusion of a third hypothetical variable, known
as a mediator variable (also a mediating
variable, intermediary variable, or intervening
variable). Rather than a direct causal
relationship between the independent variable
and the dependent variable, a mediation model
proposes that the independent variable
influences the mediator variable, which in turn
influences the dependent variable. Thus, the
mediator variable serves to clarify the nature of
the relationship between the independent and
dependent variables.

From: Causal Directed Acyclic Graphs
JAMA. doi:10.1001/jama.2022.1816

M
Mediator
DIRECTED PATHS

NONDIRECTED PATHS
C
Confounder
S
Collider
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Table 1. Unit-Specific Quantities Defined in Potential Outcomes Unlock Many Causal

Estimands for Inquiry

Colloquial
Estimand name Mathematical statement DAG Reference terms
Average treatment 1 Z (Y,- (@) - Yi( d)) D =Y Morgan and Effect
effect n < Winship
(2015)
Conditional i ’ X —D—Y Atheyand Effect
average treatment Z (Y;(d) - Y"(d)) Imbens heterogeneity
effect s (2016) or moderation
Causal interaction :}Z ((}G( &\ d) - Yi(d, d)) A ~ Vanderweele Joint treatment
i Y (2015) effect
- (Yi(a, &) - Y.-(a,d))) A
D
Controlled direct / M Acharya Mediation
Y; d ] - Y; d: y
effect ( (d;m) ( m)) / \ et al. (2016) (Ilustrations:
D——Y Example 2)
Natural direct 1 , M Imai etal.  Mediation
offect = (Yf(d » Mi(d) N, o (Part B of
' the Online
- Yi(d, Mi(d))) D———Y¥% Supplement)
Effect of time- 1 b ( Yid . d) - Yid:. d \ Dy = Dy —Y Wodtke Cumulative
varying treatment 7 ity = W) o N et al. (2011) effect
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METHODOLOGY Open Access

Investigating causal mechanisms in Q
randomised controlled trials |

Hopin Lee'?'®, Robert D. Herbert®*, Sarah E. Lamb', Anne M. Moseley® and James H. McAuley™®

Abstract

Introduction: In some randomised trials, the primary interest is in the mechanisms by which an intervention exerts
its effects on health outcomes. That is, clinicians and policy-makers may be interested in how the intervention
works (or why it does not work) through hypothesised causal mechanisms. In this article, we highlight the value of
understanding causal mechanisms in randomised trials by applying causal mediation analysis to two randomised
trials of complex interventions.

Main body: In the first example, we examine a potential mechanism by which an exercise programme for rheumatoid
arthritis of the hand could improve hand function. In the second example, we explore why a rehabilitation programme
for ankle fractures failed to improve lower-limb function through hypothesised mechanisms. We outline critical
assumptions that are required for making valid causal inferences from these analyses, and provide results of sensitivity
analyses that are used to assess the degree to which the estimated causal mediation effects could have been biased
by residual confounding.

Conclusion: This paper demonstrates how the application of causal mediation analyses to randomised trials can
identify the mechanisms by which complex interventions exert their effects. We discuss methodological issues and
assumptions that should be considered when mediation analyses of randomised trials are used to inform clinical
practice and policy decisions.

Keywords: Mechanism, Mediation analysis, Complex interventions, Causal inference, Musculoskeletal system,

Rheumatoid arthritis, Ankle fractures, Exercise therapy

- Deteccio de diferents mecanismes segons el grup
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- Diferents outcomes?

SARAH trial EXACT trial
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Fig. 1 Causal models of intervention mechanisms, effect decomposition, and sensitivity plots of the SARAH and EXACT trials. The causal models panel
shows the hypothesised mechanisms of each intervention. The blue lines represent the effect of the intervention on the outcome through the
mediator of interest (indirect effect); the green line represents the effect of the intervention on the outcome that is not exerted through the mediator
(direct effect) which includes all other possible mechanisms; and the black lines represent possible confounding effects that were adjusted for in the
analysis. Each model assumes that the intervention does not modify the mediator-outcome effect. The effect decomposition panel shows how the
average total effect of the intervention on the outcome is decomposed into the indirect effect (blue lines in the causal models), and the direct effect
(green lines). These effects are presented as unstandardised effects with their 95% confidence intervals, The sensitivity plots show how much the
estimated indirect effect would change if there was residual confounding of the mediator-outcome effect. The sensitivity parameter (horizontal axis)
represents hypothesised levels of residual confounding: 0 indicates no residual confounding, and = 1.0 and 1.0 are the maximum levels of residual
confounding. The dashed horizontal line represents the estimated indirect effect when there is no residual confounding (sensitivity parameter = 0). The
curved solid line represents the estimated indirect effect at varied levels of residual confounding. In the SARAH trial, the indirect effect estimate would
become 0 if there was moderate residual confounding (sensitivity parameter = 030), whereas in the EXACT rial, the indirect effect is stable across

levels of residual confounding. The grey zones represent 95% confidence intervals
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Conditional Average
Treatment Effects (CATE)

The CATE is the treatment effect in a subgroup of
the population, while the ATE is the treatment
effect in the population at large. If the composition
of variables that modify the treatment effect differs
between the subgroup and the population, then
CATE will not equal ATE.

Estimation and Inference of Heterogeneous Treatment
Effects using Random Forests*

Stefan Wager Susan Athey
Department of Statistics Graduate School of Business
Stanford University Stanford University
swager@stanford.edu athey@stanford.edu

July 11, 2017

Abstract

Many scientific and engineering challenges— ranging from personalized medicine to
customized marketing recommendations—require an understanding of treatment effect
heterogeneity. In this paper, we develop a non-parametric causal forest for estimat-
ing heterogeneous treatment effects that extends Breiman’s widely used random for-
est algorithm. In the potential outcomes framework with unconfoundedness, we show
that causal forests are pointwise consistent for the true treatment effect, and have an
asymptotically Gaussian and centered sampling distribution. We also discuss a prac-
tical method for constructing asymptotic confidence intervals for the true treatment
effect that are centered at the causal forest estimates. Our theoretical results rely on a
generic Gaussian theory for a large family of random forest algorithms. To our knowl-
edge, this is the first set of results that allows any type of random forest, including
classification and regression forests, to be used for provably valid statistical inference.
In experiments, we find causal forests to be substantially more powerful than classical
methods based on nearest-neighbor matching, especially in the presence of irrelevant
covariates.

“Many scientic and engineering challenges -
ranging from personalized medicine to
customized marketing recommendations- require
an understanding of treatment effect
heterogeneity.”
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grf Getstarted  Reference  Tutodals ~  Aigorithm reference  Deveioping  Changelog

generalized random forests DE ke
"- Download from CRAN at
A package for forest-based stalistical estimation and inference. GRF provides non-paramelric methods for Btipesholoud - project ongpeciagen !
heterogeneous reatment eflects estimation (optionally using right-censored outcomes, multiple treatment ams or > Browse source code at
outcomes, of Instrumental vartables), as well as least-squares regression, quantile regression, and survival hitps./igithub.com/gri-labs/grt/
regression, all with support for missing covariates. Report a bug at
In addition, GRF supports ‘honest’ estimation (where one subset of the data is used for choosing spits, and another for the hitps:/igithub.comigri-tabs/gi
leaves of the tree), and confidence intervals for least.squares regression and treatment effect estimation. License
‘Some helptul links for getting started: S
+-The R packog CoRtaing: seege ssplen ST ubiod efereos. Developers
+ The GRF reference gives a detailed descriplion of the GRF aigorithm and includes oubleshooting suggestions.
« For community questions and answers around usage, see Github issues labelied ‘question’. Jutie Tibshirani
“The repository first started as a fork of the ranger repository — we owe a great deal of thanks to the ranger authors for their useful and A
free package. Susan Athey
Austhor
. Erik Sverdrup
Installation e
The latest reiease of the package can be installed through CRAN: Stefan Wager
Ausrr
install.packages(“gef=) All authors...
conda USErs can install from the conda-forge channel: Dev status
T o

The current development version can be installed from source using devtools.

L7

grf |EEX] Getstarted  Relerence

Reference

Causal forest

causal_forest()
causal_survival_forest()
multi_srm_causal_forest()
pradict(<causal_forest>)
predict(<causal_survival_forest>)

predict{<multi_arm_causal_forest>)

Instrumental forest

instrumental_forest()

predict(<instrumental_forest>)

Linear model forest

Im_forest()

predict(<lm_forest>)

Tutorials ~ Devel

Causal forest

Causal survival forest

Multi-arm causal forest

Predict with a causal forest

Predict with a causal survival forest forest
Predict with a multi arm causal forest

Intrumental forest
Predict with an instrumental forest

LM Forest
Predict with a Im forest

Contents

Causal forest
Instrumental forest
Linear model forest
Probability forest
Quantile forest
Regression forest
Survival forest
Treatment effect estimation
Analysis tools
Plotting and printing
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EDITORIAL

Toward Personalizing Care

Opinion

Assessing Heterogeneity of Treatment Effects in Randomized Trials

Issa | Dahabreh, MD, 5cD; Dhruv 5. Kazi, MD, MS

Clinicians know that individual patients may respond differ-
ently to a given treatment and that the overall treatment effect
reported in a randomized trial of the treatment may not be di-
rectly applicable to all patients in clinical practice.” Determin-
ing the treatment effect for an
individual patient involves
2 comparison of the outcome
when that patient is exposed to the treatment vs the outcome
of the same patient exposed to a control treatment at the same
time, a comparisonimpossible to make in conventional parallel-
group trial designs. A practical alternative is toexamine hetero-
geneity of (variation in) treatment effects across groups of pa-

Related article

tients, categorized by baseline demographic or clinical
characteristics, such as age or risk factors for the outcome.?
In this issue of JAMA, Goligherand colleagues? explore the
ability of porary statistical d
geneity of treatment effects using pooled data from 3random-
ized platform trials assessing the effect of therapeutic-dose hep-
arin on organ support-free days and all-cause mortality in
patients haspitalized for COVID-19 in the early pandemic. They
compare 3 approaches for identifying heterogeneity of treat-
ment effects: (1) traditional one-variable-at-a-time subgroup

t hetero-

analyses; (2) risk score analyses, in which patients are grouped
by predicted risk of trial outcomes; and (3) effect score analy-
ses, in which patients are grouped by predicted treatment ef-
fect. The 3 approaches yielded congruent results, suggesting
that patients with a body mass index (BMI) of less than 30 and
those with moderate severity COVID-19 at presentation ap-
peared to benefit, whereas those with a BMI of 30 or greater
and severe COVID-19 at presentation did not benefit and may
havebeen harmed. These theneed toevalu-
ate ity of treatment effectsin randomized trials: had
the trials evaluated the effect of therapeutic heparin in pa-
tients hospitalized with COVID-19 withaut stratifying by dis-
ease severity, the overall treatment effect may have been close
tonull, chscuring signals of differential benefit and harm across
clinically meaningful patient subgroups.

This Editorial will attempt to explain the rationale for
Goligher and colleagues’ efforts, place them in broader meth-
odological context, and offer suggestions for future assess-

ments of heterogeneity in randomized trials.

Traditional subgroup analyses to examine heterogeneity
of treatment effects are ubiquitous in the medical literature.
Investigators group trial participants by clinical variables
(eg, disease severity or BMI categories) and assess whether ef-
fects are heterogeneous across subgroups, one variable atatime
(Goligherand first A heap-
proach s, it presents several challenges. - Trials are typically

jama.com

statistically underpowered to detect differences between
subgroups, so thereis high risk of false-negative findings. At the
same time, performing multiple subgroup analyses increases
therisk of falk i Although these an
be addressed by approaches such as rigorous prespecification
of comparisons, icil j for hypothesis test-
ing, and hierarchical modeling, a key practical limitation re-
‘mains: one-variable-at-a-time subgroup analyses are difficult
to use for clinical decision-making because each patient be-
longs tomultipls groups and each subgroup haveadif-
ferent magnitude and direction of treatment effect (eg, a pa-
tientcan have a BMI ofless than 30 and severe COVID-19).% Thus,
traditional one-variable-at-a-time subgroup analyses may be
useful as exploratory or descriptive analyses, and may pro-
duce population-level insights, but multiple variables have ta
be jointly considered to generate clinically relevant assess-
‘ment of heterogeneity of treatment effects.

One way to integrate information from multiple variables
is to examine heterogeneity of treatment effects over the pre-
dicted risk of a trial outcome (Goligher and colleagues’ sec-
ond approach).® A well-calibrated risk model is used ta inte-
grate multiple variables intoa single “risk score” variable that
«captures risk of the outcome without treatment, followed by
an examination of whether treatment effects vary over the risk
score.” In practice, risk score analyses typically have 3 steps:
first, a risk score—internally developed using the trial data or
externall pedusingi data—is used to group
trial participants by level of predicted risk; next, risk group-
specific treatment effects are estimated; and, finally, the treat-
ment effects are examined for heterogeneity. There are
several advantages to this approach. Clinicians intuitively
incorporate risk into clinical decision-making, validated risk
scores are widely used in clinical practice, and risk is corre-
lated with treatment benefit. To the extent that the risk score
captures variation in risk, it should be able to identify groups
of patients who are unlikely to benefit from treatment as well
as groups that have the potential to benefit. Furthermore,
by reducing multiple variables into a single score, risk score
approaches avoid the multiplicity issues of one-variable-at-a-
time subgroup analyses. These attractive features may ex-
plain the increasing popularity of risk score analyses in ran-
domized trials and the emphasis on such approaches in recent
methodological recommendations.®

But risk score analyses may not fully capture heteroge-
neity of treatment effects because risk of an outcome in the
absence of treatment may not strongly correlate with benefit
or harm from treatment. For example, among patients hospi-
talized with COVID-19, a patient with a BMI ofless than 30 and

JAMA  Published online March 21,2023

© 2023 American Medical Association. All rights reserved.

El

Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT
Heterogeneous Treatment Effects of Therapeutic-Dose Heparin
in Patients Hospitalized for COVID-19

Ewan C. Goligher, MD, PhD: Patrick R. Lawler, MD, MPH; Thomas P. Jensen, MS; Victor Talisa, PhD; Lindsay R. Berry, PhD; Elizabeth Lorenzi, PhD;
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Editorial
IMPORTANCE Randomized clinical trials (RCTs) of therapeutic-dose heparin in patients Supplemental content
hospitalized with COVID-19 produced conflicting resuits, possibly due to heterogeneity of
treatment effect (HTE) across individuals. Better understanding of HTE could facilitate

individualized clinical decision-making.

OBJECTIVE To evaluate HTE of therapeutic-dose heparin for patients hospitalized for
COVID-19 and to compare approaches to assessing HTE.

DESIGN, SETTING, AND PARTICIPANTS Exploratory analysis of a multiplatform adaptive RCT of
therapeutic-dose heparin vs usual care pharmacologic thromboprophylaxis in 3320 patients
hospitalized for COVID-19 enrolled in North America, South America, Europe, Asia, and Australia
between April 2020 and January 2021. Heterogeneity of treatment effect was assessed 3 ways:
using (1) conventional subgroup analyses of baseline characteristics, (2) a multivariable outcome
prediction model (risk-based approach), and (3) a multivariable causal forest model (effect-based
approach). Analyses primarily used bayesian statistics, consistent with the original trial
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Transportability problem

The study of
transportability aims to
identify conditions under
which causal information
learned from experiments
can be reused in a
different environment
where only passive
observations can be
collected.

External validity and comparative effectiveness research
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Clinical Practice

One of the primary motivators of
comparative effectiveness
research (CER)

Understand the benefits and
harms of alternative interventions
in routine (or real-world) clinical
practice settings.
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Why would treatment effects differ in trials and target
populations?
Modifiers of drug effects
(i.e., treatment effect heterogeneity)

Lower renal function

XX XX I; Older age
AAOAM

Trial Clinical practice
population population
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A FRAMEWORK FOR GENERALIZATION AND TRANSPORTATION OF i i ili
CAUSAL ESTIMATES UNDER COVARIATE SHIFT A ReVIew Of Ge nerallzablllty

and Transportability

Irina Degtiar and Sherri Rose
Harvard TH. Chan School of Public Health and Stanford University

APOORVA LAL, WENJING ZHENG, AND SIMON EJDEMYR

Rand d are an llent tool for g internally valid causal effects

with the sample at hand, but their external validity is frequem questioned. While clas-
sical results ol:em' of P P 1 Avm,?ge T Iym (PATEJ Imphdﬂy . Abstract. When assessing causal effects, determining the target pop-
3 1, into exper this is I‘yp)ﬁlly far from true in medi- ‘:..' |ilal’io‘n to which lln m::lts are intended to generalize is a critical
cal, social-scientific, and industry experiments. When the experimental sample is dlﬂen- S . i d”w“ et hasse 5ty Tﬂ"ﬂ "
ent fi thehrgﬂ sample 1 L ablacr ¢ able dim ( i and limitations estimating causal effects in a target population.
ate shift in the 11 it ) b FEgnmeilie be of Hmlted -‘C [Estimates from randomized data may have internal validity but are
ﬁ; !ﬂ i cr.:: W Tlhl: A 'le 4 ey m:y m _‘_' often not representative of the target population. Observational data
© pollcl);h' the o ‘rz:std 5.8 Aty IR a:; o may better reflect the target population, and hence be more likely to
re-wel doubly- scores 1'0“_' P 5 ! ol have external validity, but are subject to potential bias due to unmea-
m”l':\) &I‘; :Neﬁ'" ﬂmglf (=: g ! ‘t)\:f inan o hxﬂw;‘(;;;:; _'. sured confounding. While much of the causal inference literature has
n open-source packa; [0 focused on addressing internal validity bias, both internal and exter-
and illustrate llsperlormame in a simulation study and discuss diagnostics to evaluate its ) nal validity are y for unbiased in a target popu-
performance. lation. This paper p a for g 1 va-

M lidity bias, a sy of app for g

and transportability, the assumptions they require, as well as tests
for the heterogeneity of treatment effects and differences between
study and target populations.

MSC 2010 subject classifications: Primary 62-2, Statistics Research
exposition; secondary 62G05, Statistics Nonparametric inference Es-
timation.

Key words and phrases: generalizability, transportability, external va-
lidity, treatment effect heterogeneity, causal inference.

Weobsenren iid copies of (X;. 5. 5,4, S,Y,)L_,, where covariates X, € B, treatment A, €

= {0y K},oultnmeY, < R, and selection indicator S, € {0,1} is a function of

and is not affected by In other words, we observe

EX¢ AL Y)Y, for observations with §, = 1 (henceforth the study sample &), and only

(Xi)} 41 for observations with S; = 0 (henceforth the external sample ). The overall
sample is S := S, U S,.

Estimands. Wewﬂltmunterfml meansas ¢ = E [Y**'] for generalizability and E [Y*|S = 0]

for portability, such counterfactual means under any two treat-
ment levelsa, ' rep the 2 effects (ATE). ‘Standard’ estimation of ef- 1. BACKGROUND
P octudiod
ml &;T;ﬁz]ﬁrm We study the lsa il and l"gelyrm The goal of causal inference is often to gain understanding of a particular

arXiv:2102.11904v1 [stat.MI

target population based on study findings. The true underlying causal effect

will typically vary with the definition of the chosen target popuhlion However,

samples ive of the target population arise frequently in studies

(1) Consistency / SUTVA : Y, = 1,..Y] ranging from randomized controlled trials (RCI's) in clinical medicine to policy

g; Ignorability of Treatment: b i YULAX=x5=1 research (Bell et .|I 2016; Kennedy-Martin et al., zms Allcott, 2015). In a elin-
Overlap

in the present paper. To this end, we make the following mumplims

d

ical trial setting, pl ians may be left interp id from RCTs with
(a) Treatmentoverlap: 0 < Pr(A =alX =x,S=1)<1 patients who have demographics and comorbidities that are quite different from
Irina Degtiar is a PhD candidate at the Dep of Bi isties, Harvard TH.
E-mail adds apoorval edu 1ix.com, sejdemy 14x.com. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
Date: October 22, 2022. (email: idegtiar@g.harvard.cdu). Sherri Rose is an Associate Professor at the Center
Key words and phrases. bridging. for Health Policy and Center for Primary Care and Outcomes Research, Stanford

TAvatlable at thtH;M\ub com/Netflix Slzunkuwblcml'lwupunﬂ University, 615 Crothers Way, CA 94305, USA (email: sherrirose@stanford.edu).
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